lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Evaluation of the Coulomb force via the Fredholm integral equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 307
(http://iopscience.iop.org/0305-4470/33/2/307)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:08

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger83(2000) 307-317. Printed in the UK Pll: S0305-4470(00)06314-9

Evaluation of the Coulomb force via the Fredholm integral
equation

Armik V M Khachatourian and Anders O Wistrom

Department of Chemical and Environmental Engineering, University of California, Riverside,
CA 92521, USA

Received 23 July 1999, in final form 20 September 1999

Abstract. The electrostatic force between two conducting spheres is solved exactly from
Coulomb’slaw. The force is evaluated in two steps: (i) the charge distribution on each of the spheres
is calculated as a function of separation distance by way of a solution to the Fredholm integral
equation; (ii) the effect of the known charge distribution is integrated to obtain the electrostatic
force. Evaluation of the electrostatic force is fast because the series expression for the charge
distribution is ‘super converging’, a characteristic trait for some Fredholm-type equations.

1. Introduction

Electrostatic forces are readily estimated by the simple dipole expression when particle spacing
is relatively large and particles are assumed to be small. To improve accuracy the simple dipole
expression can be replaced by the more general multipolar expression [1]. A series expression
for a finite number of multipoles is often adequate for many practical applications if the
interaction is either monotonically attractive or monotonically repulsive. Alternatively, the
method of images yields the electrostatic force directly using the classical series expression [2]
which is also written in a modified form to speed up convergence [3], or by using approximate
expressions [4].

In this contribution we present the closed form series solution of the Coulomb force [5]
obtained from Gauss’ [6] generalization of the electrostatic force for distributed charges. The
solution for the charge distribution is obtained directly by way of the Fredholm integral equation
ofthe second kind [7] whose solution is known to be rapidly convergent. The method presented
is direct and systematic and can be readily generalized to many-body systems.

1.1. Coulomb’s law

Coulomb’s law for point charges is readily generalized to account for the electrostatic force due
to an ensemble of charges residing on two macroscopic surfaces. We consider the electrostatic
force between two conducting spheres of radiusanda, connected to an external power
supply where the top sphere is raised to a constant potentid] @blts (in steady state),
acquiring a surface charge densityand the bottom sphere is raised to a constant potential

of V, volts (in steady state), acquiring a surface charge deasityhe Coulomb force [5] on

the top sphere is then solely due to the charged bottom sphere, and is given by

F=K / dQﬂ)h)(—%)/ 90a(x2)
| X1 — x2|

0305-4470/00/010307+11$30.00 © 2000 IOP Publishing Ltd 307

)



308 AV M Khachatourian ad A O Wstrom

a) b) c)

Figure 1. Schematic representation of two spheres each having a uniform distribution of potential.
Potentials, charge densities, and the radii on the top and bottom spheres are #flgneted; and
Vo, 02, az, respectively.

wheref(l = (X1, Y1, Z1) andX, = (x2, y2, z3) are points on the top and bottom spheres,
respectively. For a spherical coordinate system equation (1) is written

T 27 T 27
F=K / / af sing dp d¢/01(ﬂ)(—V[r_a,¢]) / / a% sing, do, de,
0 0 0 0

y 02(02) @)

\/rz +a5 — 2a,r[coSa COSH; + Sina Sind, coSp — ¢)]

. — 2 + 52 _ — h—ay cosB
where (figure 14)) r \/al h? — 2a;h cosp and cosy it s Note the

restriction that Coulomb’s law is not valid upon contaét h — a1 — az = 0), whereby
|X1 — X2| # 0.
Equation (2) can also be written in terms of Legendre polynomials;):

00 00 . m
R . L+m+1)! asa
F = 2K (27)*(a1a2)* Z Z il hﬁim:h-z
m=0 ¢=0 -m:

/ ! sinB dBo1(B) P, (cospB) / ! sinG, dfo»(67) Py (COSHy). 3)
0 0

Contact is avoided by stipulating thiat> a1 + a,, whereh is defined as the nearest centre-to-
centre separation distance between two spheres ofaadiida;.

Once the magnitude and location of all charges residing on the sphere surfaces are specified
then the electrostatic force can be calculated. If sphere surfaces are polarizable then the
magnitude and location of charges are determined from Gauss’ potential [6] which is discussed
next.
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1.2. Surface potentials

The electrostatic potential [6] at a poift= (x, y, z), due to the spheres, is given by
dQ1(x1) K dQa(x2)

IX — X1 X — X2

y(x) =K 4)
where the potential at = (x, y, z) is the sum of the contributions from the top and bottom
spheres, respectively. Equation (4) is valid at all points except Whenx;| =0 (G = 1,2
for the top and bottom spheres, respectively) where the endpoints of the two vectors coincide
on the sphere surfaces. Equation (4) can be viewed as the time-independent, instantaneous
(action-at-a-distance) and singular propogator solution of the two-particle partial differential
equation given by PoissorW?yr = —4r Kp, whereV? is the Laplacian ang denotes the
charge densities, which for our special case, reside only on the surface of the spheres. The
charge differential is defined agdd= dVp = dV (o1(X1)8 (|x —X1|) +02(X2)8 (|x —X2|)), where
8(]y|) is Dirac’s delta function, # is a volume element; (y) is the charge per unit area and
the potential is defined as = [, spaced QG = S spaced VPG, WhereG is the Green function
(the instantaneous propogator or kernel). It follows W46 = §(|x — X1|) + 8(]X — X2|), for
which a particular singular solution is given By= K(ﬁ7—§ﬂ + ﬁ), from which+ follows
immediately.

In the case of constant sphere potentials it follows from equation (4) thEib4(x;) =
—%l‘ﬂ:p}i‘, fori = 1,2. The boundary conditions on the surface of the top and bottom
spheres are written [6] as

L
dQll dQ» ©)
V2=K/7+K/

/
1 R2

where the length quantitig®;, R;, R, andR5 are showninfigures bf and €). Transformation
into the spherical coordinate system yields

T 2
Vi=K / / a? sindy 6y depy 0160
o Jo \/Zaf — 2a2[cosp cosh; + sinf sindy cosp’ — ¢1)]

b4 27
+K / / a% sind, dd, do,
0 0

y 02(02) ©)

\/rz + a% — 2a,r[cosa cosd; + sina sind, oS¢ — ¢)]

wherer = gf + h? — 2a,h cosp, cosa = 2"’“1&, which must holdfor0< 8 < =
a?+h?—2a1h cosp
(figure 1¢€)), and

02(62)
\/2a§ — 2a3[cosa coSd, + Sina Sind, COYP — ¢2)]

T 2
+K / / az sinfy doy depy
0 0

y 01(01) %

\'/r/2 +a? — 2a1r'[cosBcosb + sinp sindy coS@’ — ¢1)]

T 2
Vo=K / / a3 siné, do, dep
0 0
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wherer’ = \/a§+h2 — 2aph cose, and CoP = ——L=2%0% __ which must hold for
N/ a5+h?—2azh cosa

0 < a < m (figure 1)). Equations (6) and (7) couple the potentidls,and V,, to the
charge densitiesy; and o, such that for a given surface potential and sphere separation
distance the surface charge density is uniquely determined.

Equations (6) and (7) can also be written in terms of Legendre polynomials Bjnce
follows from V; by obvious interchange of symbols we need only outline the identities used
to obtainV; given in equation (11) fron¥; given in equation (6). They are

2 dgbl =\ 2
| =3 Picosp) Pu(cost)
0 \/Zaz 2a1[cos/3 cosdy + sinB sind, cog¢’ — ¢1)] =0 U

®
and
fzn dg,
0 \/r2 +a5 — 2raz[cosa COSH; + Sina sinf, CoSp — ¢)]
%) ae
=2 Z g Pr(€oS0) Py (COSy)
£ +m)! azal
=2n Z Z i it Pn(COS) Pe(COS62) 9)
where in the last equality we have substituted for the t@é@%&fﬂ, the identity given by
Py(cOSar) P, (cosw) (=D o 1
rirt (a2 +h2 — 2a1h cosp) 7 el 9ht \/af + h2 — 2a,h cosp
(Dt 8t & (+m)! af
= ?) aht’ Z Py (COSﬁ) hm +1 Z lm!  ptim+l Pin (COS‘B) (10)

m=0
which follows by direct differentiation and substitution for the geometrical relation
r cosa = aj cosB. A similar procedure will yield the equation fds:

o Ap X +m)! af
£ +m)! aﬁ
Z P Z(COS“)[ o 2_; ol e Am |- (12)
The coefficients in equatlons (11) and (12) are given by
T
B, = 2nKay*? / SinG, dd102(62) P,, (COSH,) (13)
0
A =27 Kai? / Sin@; dd1o1(61) P,, (COSH7). (14)
0

Orthonormality relations of Legendre polynomialgf,_lldcosQPm(cose)Pk(cose) =
applied to equations (11) and (12) implies that

Ay > (€ +m)! a‘lZ
Video = g + Z BmWW (15)

2
Zr1Om ks

1 m=

By o €+m)! aj
Vadeo = e + %Amwﬁ (16)
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An expression for the charge densities in equations (14) and (13) are obtained by using the
distributive properties of Legendre polynomia)s,- ”2* L p,(cosa) P,(costy) = §(cosa —

cosby), and yields

1 i 2m + 1A,

01(61) = K 2 P,,(cosb) (17)
m=0 1
1 & @2m+1)B,
02(02) = Z " P, (COSHy). (18)

m= 2

We can use Gauss’ successive approximations to solve for charge densities as follows.
From equations (15) and (16) we have

2[+l o0 (€+m)| (k+m)| 2K+1 %m+l

Ac= Viawbio = Vata Tl e+ ZX; Tonl Kl L e (19)
2@+l o0 0 2@+1 2m+l
C+m)! (k+m)! a a;
By = Vaazde0 — Viay 2 et T Z); By ol klml hz+k+1 pmil’ (20)
Equations (17) and (19) give
1% Vs
01(61) = —— Z 20+ 1)—Pz (cosfr)

47tKa1 4 K a, h

21£+l 2m+1
1 Z(zzz 1)Pe(cosel)[ZZAk“m)' (k+m)! a2 a2 }

ArK = a?z 0 ke Lm! klm! hﬁ+k+1 p2m+1
Substituting from equations (14) and (13) f&f, we obtain

V: Vs
Gl(cosel) = 1 Z (ZE + 1) l PZ(COSG]_)

4dn Ka, 471Ka1 h

LN (£ m)! (k+m)! althrt §m+l]

1
+§§(26+1)PZ(COSHI)[ZZO 'm! Kl h[+k+l h2m+l

X/ d@zSiﬂ@gUl(ez)Pk(COSQQ).

Lettinga; = %, ap = %, x; = cosh; andx, = c0sb,, we have

h 1
\% Vs
o1(xy) = — oz Z (2¢ + Der} Py (xy)

471Ka1 A7 Ka al

L+m)! (k+m)!
42X Z(ZZ+1)PZ(X1)|:ZZ ( E!HIZ) (k!n’Z) a£+k+1a§m+1j|

m=0 k=

1
X/ldXQO’l(xZ)Pk()Cz). (21)

Equation (21) can be viewed as an inhomogeneous integral equation of Fredholm type with
singular kernel

1
o1(x1) = Z(x) +?»/1dx2K(x1,x2)U1(x2) (22)

where
Vi Vs
4 Kal 47TK al

To(xy) = o Z (2€ + Dot} Py (x7)
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AK (x1, x2) = Z (2¢ + 1)Pe(x1)|:z Z (Cxm)t (k+m); af“‘”a%mﬂ] Pi(x2).

= £'m! k'm!

Because the iterative solution for the Fredholm integral equation is known [TMRel)th-
order approximation of equation (22) can be written as

Ey+1(x1) = Zg(rg) + Ti(x1) + Zo(xg) +- -+ Ty (x1) (23)
where
1
Xi(x1) = )»/ dx2K (x1, x2) g (x2)
-1
1
X5(x1) = )»/ dx2K (x1, x2) Z7(x2)
-1
1
Ty (1) = X/ dx2K (x1, x2) T (x2)
-1
and
1,1 1
o1(x1) = Zn+1(x1) + N / / - / dxodxs...dxy+1 K (x1, x2)K (x2, x3)
“1J-1 1

K (xy, xy+1)01(XN+1). (24)
By substitution the charge densities(xl) ando»(x;), follow immediately:

2
—z7
o1(x1) = [ KLk ]
47 Ka1 le/H k [1 +z/2 21,/,1)61]g
D
_ Wit (25)
471Ka1 ugui | =5 N +uZ — Zumxl]
and
N
02(x1) = |: u }
4Ka2 — L Lt [1+u1 2ux]
ZZ
Zp_12k S (26)
471Ka2 zozl[rnzl,n =t [1+22 —2mel]§:|
wherezg = ug = 1,21 = ap andzy = #zl' 4= e el dzy = =5 ary s M1 =01 and
wy = i h = i anduy = =iz for N > 2. The net chargegs and 0, follow

by integration of equations (25) and (2&),(= Zym? f7 dxo;(x);i =1,2):

Via Voar o
01 = “[ Zl‘[zm] ;1MO;1[ZHuk m] (27)

m=1k= m=1k
Vgaz v1“2 o1

Q2= 1+ Z l_[ Ul o Z l_[ Zp—1%k (28)

m=1k= K zoul p=ii

For equivalent sphere potentials and radii the net charge reads
Viay Viai

= 1+ n” = In2 29
01=02= [ Z( U J X (29)

which is in exact agreement with Kelvin's result [10].
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Figure 2. Evaluation of the charge density distribution for two conducting spheres of equal size,
a1 = ap, and ratio of sphere potential¥p/V; = 0.927. The evaluation is carried out using
the surface integral method (floating point average)Noge= 50 (——), N = 200 (— - —) and
N =400(------ ) and using the Fredholm-type expressionfoe 100 (— — —).
1.3. Efficiency

The efficiency of the Fredholm-type expression for the charge density distribution was
compared with the surface integral method, or moment method [8], by considering the charge
density distribution for the case where both spheres are of equaksizea, = a, held at
constant but unequal potentid,/ V1 = 5100/5500, at a sphere—sphere separation distance
of d/a = 0.025. Calculations for the charge density distribution on the sphere with the higher
potential using the surface integral method were carried out for several valiyesadfere N

is the number of subdivisions of the polar anglewhere O< 6 < 7, and step-siza is given

by A = . The surface integral requires filling a1 x N matrix followed by an inversion

which requires approximately 3+ %ﬂ) operations using forward elimination and backward
substitution in Gauss’ procedure [9]. In figure 2 the calculated charge density distribution for
N =50, 200 and 400 are shown as a function of polar angle. It is immediately apparent that
even smaller step sizes (larg€) are required for the surface integral method to approach the
asymptotically correct value for the charge density distribution obtained from the solution of
the Fredholm integral equation using only 100 intervals. Using the Fredholm-type expression
requires only%”) operations for the same order accuracy which means that the total number
of operations has been reduced from approximak&lyto approximatelyv?.
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Figure 3. The Coulomb force between two dissimilar, fully polarizable, spheres as a function
of the surface potential},/Vi, and separation distancd,/a;, whered is the surface-to-
surface separation, and is the radius of the top sphere. Force is scaled with a faftes

K (27)%(V1/4K)? which corresponds tg = 2.74 x 1010 for a particle with radius 1& 106 m

and potential’; = 1 mV. K is the factor ¥4m <o approximately equal to @ 10° Vm C~1. The
force is plotted forvy/ Vo = 1.0.

2. Coulomb force

The electrostatic force is evaluated in a second calculation where we integrate the effect of the
known charge distribution using the expression for the Coulomb force. Direct substitution of
o1(x1) ando,(x1) from equations (25) and (26) into equation (3), yields, after integration over
0
ViVa [ S o liazizx St H?—lzizkné—lu/‘“i
F = aop| 1+ = + = + = i=1"
2.7 2.7 D2,

K 1— aoul,)? 1—012,,)? == (1 -z, — outy)?

m

00 00 / £ ’
o102 Z [Ticati g lizazi g2 i|

/ / _ _ 2
ug1zoz1 f=p = (L — aqum — a2ze)

[ee) m / oo 00 m / ¥4 /
ViViag [ [Tic1zi 12k [limizizr] [izazi 1z
- 10tz DS

/ 2 2
Kzpza = L —oozn)® o (11— a1z, —ooze)

_ VoV [i [Tcatthqur + i i HZ:l”;c”knf:l“;l”i:I (30)
Kuguq 1 (1—ouw)? == 1—au), —awmy)? |

Equation (30) is valid for the electrostatic force between two polarizable spheres held at

constant potentialsy; and V,. Experimentally, the constant potential limit describes the

physical situation of two polarizable spheres connected to a voltage power supply. In figure 3

the electrostatic force is plotted as a function of relative sphere &ize;, and separation

m=1
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K (2m)? (%)

Figure 4. The Coulomb force between two dissimilar, fully polarizable, spheres as a function of
the effective charge densit@,/Q1, and particle size ratias» /a1, wherea; anda; are the radii

of the top and bottom spheres, respectively. Force is scaled with a factok (27)2(Q1/a1)?,
which corresponds tg = 9.11 x 10~ N for a sphere with radius 1@ 10~® m and net charge

1.6 x 10719 C. K is the factor ¥4m ey approximately equal to @ 10° Vm C~1.

distanced/a1. The most important feature is that the Coulomb force is everywhere repulsive
and monotonic with respect to separation distance but not with respect to relative size ratio.
Furthermore, in the limit of sphere—plate interaction, i.e. wigta; = oo, the force at near
contact approaches zero.

Alternatively, the polarizable spheres may be held at constant ch&geand Q.
Experimentally, the constant charge limit describes the charged state of conductive particles
such as aerosols [11] or water in oil emulsions. If particle charges are specified equation (30)
will still hold after the necessary substitutions are made from equations (27) and (28):

_1[KO (T /)+KQ2 2 ST ]
Vi bl a (1 m;/l:[lukuk o ;gu,ﬁluk (31)
_ l r Q2< o0 m /) KQ]_ 0[1 o0 m , ]
Vo= — 1+ Wz |t - Zp_1%k 32
D| a m;,!:[l k ar 721 n;l,!:[l k=1 (32)
where
oo m r oo ¢ o0t oo m oo L
D= [1+Zn1kz;} 1+ZHW2} N | (T M | B
m=1k=1 L =1i=1 ZpliMoU1 [ = i1 =1 i=1

assuming no charge los&,Q = 0, during the interaction. In figure 4 we plot the electrostatic
force between spheres having equal cha@g,0Q; = 1 with respect to relative sphere size,
az/ay, and separation distancé/a;. Noticeably, it is only for equivalent sized spheres,
a1 = ay, that the pair interaction is everywhere repulsive to monotonically approach zero at
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Figure 5. The Coulomb force between two, fully polarizable, spheres with effective charge density,
02/01 = 1.0, as afunction of particle size ratim /a1, and separation distaneg/a;. The force is
plotted for particle size ratiosa) Z—i =1(—), () % =12(———)and¢) % =2(—-—).

See also figure 4.

large separations. Any difference in size, # a,, will give rise to a near-field attraction.
Because most particulate systems are polydisperse in nature the electrostatic contribution to
the pair interaction is, therefore, always expected to be attractive at close separations. For
clarity, in figure 5 we plot a few special cases of force that appear in figure 4,a)og—§ E1,
(b) 2 =12and€) Z =2.

‘For the sake of completeness we also give the limiting case of the expression for
Coulomb force, equation (30), for two equivalent spheres in ‘contact’. The summed terms
in equation (30) are arranged in their proper order [10] to obtain the contact force which reads

vera on L+ Dl 1
- %3 +22( U +2>2+ZZ( b e

m= =1 m=
v2r1 2 1\ 1/5
= Z42(E Cin2-2)+2 (2 +13In2— #2
K |2 12 a2) "6\
V2 1
In2— = 33
~ ¢ (n2-3) @)

which is in exact agreement with Kelvin's result [10].
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3. Conclusion

The fundamental problem of the electrostatic force between two polarizable spheres is solved
by casting the expression for the charge density distribution in the form of the Fredholm
integral equation of the second kind. The result is an expression of the Coulomb force in a
series form which converges rapidly. From a computational standpoint it is most important
that the Fredholm-type expression can be evaluated two to four orders of magnitude faster
than the surface integral method depending upon the desired accuracy at small polar angles.
Such savings in computational speed may be significant in models of particle aggregation and
suspension stability where pair-interaction forces are evaluated to predict phase transitions.

References

(1]
(2]

(3]

(4
(5]

(6]

(20]

(11]

Smythe W R 1968Static and Dynamic ElectricittNew York: McGraw-Hill)

Jears J H 1951The Mathematical Theory of Electricity and Magnetisith edn (Cambridge: Cambridge
University Press)

Russell A 1911Proc. Phys. Soc. Londd8

Soules J A 1990Am. J. Phys58 1195

Coulomb A-C 1884Collection de Memoires Relatifs a la Physidigblies par La Societe Francaise de Physique
Tome | Memoires de Coulomb Imprimeur-Libraire du Bureau des Longitudes de L'Ecole Polytechnique Quai
des Augustine vol 55 (Paris: Gauthier-Villars)

Gaus C F 1966 Resultate aus den beobachtungen des magnetizchen vereins im jahre 1839 LeifSiml1840
Transl. Scientific Memoirs, Selected from the Transactions of Foreign Academies of Science and Learned
Societies No TNew York: Johnson Reprint) pp 153-96

Sneddm | N 1972The Use of Integral Transforngdlew York: McGraw-Hill)

MacRobers T M 1967Spherical Harmonic$Oxford: Pergamon)

Smythe W R 1968Static and Dynamic ElectricitNew York: McGraw-Hill)

Chang E W and Kincaid D RNumerical Mathematics and Computidmd edn (Brooks/Cole Publishing
Company)

Sir William Thomson (Baron Kelvin) 187Reprints of Papers on Electrostatics and Magnetigrandon:
Macmillan)

Seinfed J H and S N Bndis 1998Atmospheric Chemistry and Physics: from Air Pollution to Climate Change
(New York: Wiley)



