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Abstract. The electrostatic force between two conducting spheres is solved exactly from
Coulomb’s law. The force is evaluated in two steps: (i) the charge distribution on each of the spheres
is calculated as a function of separation distance by way of a solution to the Fredholm integral
equation; (ii) the effect of the known charge distribution is integrated to obtain the electrostatic
force. Evaluation of the electrostatic force is fast because the series expression for the charge
distribution is ‘super converging’, a characteristic trait for some Fredholm-type equations.

1. Introduction

Electrostatic forces are readily estimated by the simple dipole expression when particle spacing
is relatively large and particles are assumed to be small. To improve accuracy the simple dipole
expression can be replaced by the more general multipolar expression [1]. A series expression
for a finite number of multipoles is often adequate for many practical applications if the
interaction is either monotonically attractive or monotonically repulsive. Alternatively, the
method of images yields the electrostatic force directly using the classical series expression [2]
which is also written in a modified form to speed up convergence [3], or by using approximate
expressions [4].

In this contribution we present the closed form series solution of the Coulomb force [5]
obtained from Gauss’ [6] generalization of the electrostatic force for distributed charges. The
solution for the charge distribution is obtained directly by way of the Fredholm integral equation
of the second kind [7] whose solution is known to be rapidly convergent. The method presented
is direct and systematic and can be readily generalized to many-body systems.

1.1. Coulomb’s law

Coulomb’s law for point charges is readily generalized to account for the electrostatic force due
to an ensemble of charges residing on two macroscopic surfaces. We consider the electrostatic
force between two conducting spheres of radiusa1 anda2 connected to an external power
supply where the top sphere is raised to a constant potential ofV1 volts (in steady state),
acquiring a surface charge densityσ1 and the bottom sphere is raised to a constant potential
of V2 volts (in steady state), acquiring a surface charge densityσ2. The Coulomb force [5] on
the top sphere is then solely due to the charged bottom sphere, and is given by

EF = K
∫

dQ1( EX1)(−E∇ EX1
)

∫
dQ2(Ex2)

| EX1− Ex2|
(1)
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Figure 1. Schematic representation of two spheres each having a uniform distribution of potential.
Potentials, charge densities, and the radii on the top and bottom spheres are denotedV1, σ1, a1 and
V2, σ2, a2, respectively.

where EX1 ≡ (X1, Y1, Z1) and Ex2 ≡ (x2, y2, z3) are points on the top and bottom spheres,
respectively. For a spherical coordinate system equation (1) is written

EF = K
∫ π

0

∫ 2π

0
a2

1 sinβ dβ dφ′σ1(β)(−E∇[r,α,φ])

∫ π

0

∫ 2π

0
a2

2 sinθ2 dθ2 dφ2

× σ2(θ2)√
r2 + a2

2 − 2a2r[cosα cosθ2 + sinα sinθ2 cos(φ − φ2)]
(2)

where (figure 1(a)) r =
√
a2

1 + h2 − 2a1h cosβ and cosα = h−a1 cosβ√
a2

1+h2−2a1h cosβ
. Note the

restriction that Coulomb’s law is not valid upon contact (d = h − a1 − a2 = 0), whereby
| EX1− Ex2| 6= 0.

Equation (2) can also be written in terms of Legendre polynomials,P`(x):

EF = ẑK(2π)2(a1a2)
2
∞∑
m=0

∞∑
`=0

(` +m + 1)!

`!m!

a`2a
m
1

h`+m+2∫ π

0
sinβ dβσ1(β)Pm(cosβ)

∫ π

0
sinθ2 dθ2σ2(θ2)P`(cosθ2). (3)

Contact is avoided by stipulating thath > a1 + a2, whereh is defined as the nearest centre-to-
centre separation distance between two spheres of radiia1 anda2.

Once the magnitude and location of all charges residing on the sphere surfaces are specified
then the electrostatic force can be calculated. If sphere surfaces are polarizable then the
magnitude and location of charges are determined from Gauss’ potential [6] which is discussed
next.
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1.2. Surface potentials

The electrostatic potential [6] at a pointEx ≡ (x, y, z), due to the spheres, is given by

ψ(Ex) = K
∫

dQ1(Ex1)

|Ex − Ex1| +K
∫

dQ2(Ex2)

|Ex − Ex2| (4)

where the potential atEx ≡ (x, y, z) is the sum of the contributions from the top and bottom
spheres, respectively. Equation (4) is valid at all points except when|Ex − Exi | ≡ 0 (i = 1, 2
for the top and bottom spheres, respectively) where the endpoints of the two vectors coincide
on the sphere surfaces. Equation (4) can be viewed as the time-independent, instantaneous
(action-at-a-distance) and singular propogator solution of the two-particle partial differential
equation given by Poisson:∇2ψ = −4πKρ, where∇2 is the Laplacian andρ denotes the
charge densities, which for our special case, reside only on the surface of the spheres. The
charge differential is defined as dQ = dVρ = dV (σ1(Ex1)δ(|Ex−Ex1|)+σ2(Ex2)δ(|Ex−Ex2|)), where
δ(|Ey|) is Dirac’s delta function, dV is a volume element,σ(Ey) is the charge per unit area and
the potential is defined asψ = ∫all spacedQG =

∫
all spacedVρG, whereG is the Green function

(the instantaneous propogator or kernel). It follows that∇2G = δ(|Ex − Ex1|) + δ(|Ex − Ex2|), for
which a particular singular solution is given byG = K( 1

|Ex−Ex1| +
1

|Ex−Ex2| ), from whichψ follows
immediately.

In the case of constant sphere potentials it follows from equation (4) that 4πKσi(Exi) =
− ∂ψ

∂|Ex| ||Ex|=|Exi |, for i = 1, 2. The boundary conditions on the surface of the top and bottom
spheres are written [6] as

V1 = K
∫

dQ1

R1
+K

∫
dQ2

R2

V2 = K
∫

dQ1

R′1
+K

∫
dQ2

R′2

(5)

where the length quantitiesR1,R′1,R2, andR′2 are shown in figures 1(b) and (c). Transformation
into the spherical coordinate system yields

V1 = K
∫ π

0

∫ 2π

0
a2

1 sinθ1 dθ1 dφ1
σ1(θ1)√

2a2
1 − 2a2

1[cosβ cosθ1 + sinβ sinθ1 cos(φ′ − φ1)]

+K
∫ π

0

∫ 2π

0
a2

2 sinθ2 dθ2 dφ2

× σ2(θ2)√
r2 + a2

2 − 2a2r[cosα cosθ2 + sinα sinθ2 cos(φ − φ2)]
(6)

wherer =
√
a2

1 + h2 − 2a1h cosβ, cosα = h−a1 cosβ√
a2

1+h2−2a1h cosβ
, which must hold for 0< β < π

(figure 1(c)), and

V2 = K
∫ π

0

∫ 2π

0
a2

2 sinθ2 dθ2 dφ2
σ2(θ2)√

2a2
2 − 2a2

2[cosα cosθ2 + sinα sinθ2 cos(φ − φ2)]

+K
∫ π

0

∫ 2π

0
a2

1 sinθ1 dθ1 dφ1

× σ1(θ1)√
r ′2 + a2

1 − 2a1r ′[cosβcosθ1 + sinβ sinθ1 cos(φ′ − φ1)]
(7)
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where r ′ =
√
a2

2 + h2 − 2a2h cosα, and cosβ = h−a2 cosα√
a2

2+h2−2a2h cosα
which must hold for

0 < α < π (figure 1(b)). Equations (6) and (7) couple the potentials,V1 andV2, to the
charge densities,σ1 and σ2, such that for a given surface potential and sphere separation
distance the surface charge density is uniquely determined.

Equations (6) and (7) can also be written in terms of Legendre polynomials sinceV2

follows fromV1 by obvious interchange of symbols we need only outline the identities used
to obtainV1 given in equation (11) fromV1 given in equation (6). They are∫ 2π

0

dφ1√
2a2

1 − 2a2
1[cosβ cosθ1 + sinβ sinθ1 cos(φ′ − φ1)]

=
∞∑
`=0

2π

a1
P`(cosβ)P`(cosθ1)

(8)

and∫ 2π

0

dφ2√
r2 + a2

2 − 2ra2[cosα cosθ2 + sinα sinθ2 cos(φ − φ2)]

= 2π
∞∑
`=0

a`2

r`+1
P`(cosα)P`(cosθ2)

= 2π
∞∑
`=0

∞∑
m=0

(` +m)!

`!m!

a`2a
m
1

h`+m+1
Pm(cosβ)P`(cosθ2) (9)

where in the last equality we have substituted for the termP`(cosα)
r`+1 , the identity given by

P`(cosα)

r`+1
= P`(cosα)

(a2
1 + h2 − 2a1h cosβ)

(`+1)
2

= (−1)`

`!

∂`

∂h`

1√
a2

1 + h2 − 2a1h cosβ

= (−1)`

`!

∂`

∂h`

∞∑
m=0

Pm(cosβ)
am1

hm+1
=
∞∑
m=0

(` +m)!

`!m!

am1

h`+m+1
Pm(cosβ) (10)

which follows by direct differentiation and substitution for the geometrical relationh −
r cosα = a1 cosβ. A similar procedure will yield the equation forV2:

V1 =
∞∑
`=0

P`(cosβ)

[
A`

a`+1
1

+
∞∑
m=0

(` +m)!

`!m!

a`1

h`+m+1
Bm

]
(11)

V2 =
∞∑
`=0

P`(cosα)

[
B`

a`+1
2

+
∞∑
m=0

(` +m)!

`!m!

a`2

h`+m+1
Am

]
. (12)

The coefficients in equations (11) and (12) are given by

Bm = 2πKam+2
2

∫ π

0
sinθ2 dθ1σ2(θ2)Pm(cosθ2) (13)

Am = 2πKam+2
1

∫ π

0
sinθ1 dθ1σ1(θ1)Pm(cosθ1). (14)

Orthonormality relations of Legendre polynomials,
∫ 1
−1 d cosθPm(cosθ)Pk(cosθ) =

2
2m+1δm,k, applied to equations (11) and (12) implies that

V1δ`,0 = A`

a`+1
1

+
∞∑
m=0

Bm
(` +m)!

`!m!

a`1

h`+m+1
(15)

V2δ`,0 = B`

a`+1
2

+
∞∑
m=0

Am
(` +m)!

`!m!

a`2

h`+m+1
. (16)
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An expression for the charge densities in equations (14) and (13) are obtained by using the
distributive properties of Legendre polynomials,

∑∞
`=0

2`+1
2 P`(cosα)P`(cosθ2) = δ(cosα −

cosθ2), and yields

σ1(θ1) = 1

4πK

∞∑
m=0

(2m + 1)Am
am+2

1

Pm(cosθ1) (17)

σ2(θ2) = 1

4πK

∞∑
m=0

(2m + 1)Bm
am+2

2

Pm(cosθ2). (18)

We can use Gauss’ successive approximations to solve for charge densities as follows.
From equations (15) and (16) we have

A` = V1a1δ`,0 − V2a2
a2`+1

1

h`+1
+
∞∑
m=0

∞∑
k=0

Ak
(` +m)!

`!m!

(k +m)!

k!m!

a2`+1
1

h`+k+1

a2m+1
2

h2m+1
(19)

B` = V2a2δ`,0 − V1a1
a2`+1

2

h`+1
+
∞∑
m=0

∞∑
k=0

Bk
(` +m)!

`!m!

(k +m)!

k!m!

a2`+1
2

h`+k+1

a2m+1
1

h2m+1
. (20)

Equations (17) and (19) give

σ1(θ1) = V1

4πKa1
− V2

4πKa1

a2

h

∞∑
`=0

(2` + 1)
a`1

h`
P`(cosθ1)

+
1

4πK

∞∑
`=0

(2` + 1)

a`+2
1

P`(cosθ1)

[ ∞∑
m=0

∞∑
k=0

Ak
(` +m)!

`!m!

(k +m)!

k!m!

a2`+1
1

h`+k+1

a2m+1
2

h2m+1

]
.

Substituting from equations (14) and (13) forAk, we obtain

σ1(cosθ1) = V1

4πKa1
− V2

4πKa1

a2

h

∞∑
`=0

(2` + 1)
a`1

h`
P`(cosθ1)

+
1

2

∞∑
`=0

(2` + 1)P`(cosθ1)

[ ∞∑
m=0

∞∑
k=0

(` +m)!

`!m!

(k +m)!

k!m!

a`+k+1
1

h`+k+1

a2m+1
2

h2m+1

]
×
∫ π

0
dθ2 sinθ2σ1(θ2)Pk(cosθ2).

Lettingα1 = a1
h

, α2 = a2
h

, x1 = cosθ1 andx2 = cosθ2, we have

σ1(x1) = V1

4πKa1
− V2

4πKa1
α2

∞∑
`=0

(2` + 1)α`1P`(x1)

+
1

2

∞∑
`=0

(2` + 1)P`(x1)

[ ∞∑
m=0

∞∑
k=0

(` +m)!

`!m!

(k +m)!

k!m!
α`+k+1

1 α2m+1
2

]
×
∫ 1

−1
dx2σ1(x2)Pk(x2). (21)

Equation (21) can be viewed as an inhomogeneous integral equation of Fredholm type with
singular kernel

σ1(x1) = 6′0(x) + λ
∫ 1

−1
dx2K(x1, x2)σ1(x2) (22)

where

6′0(x1) = V1

4πKa1
− V2

4πKa1
α2

∞∑
`=0

(2` + 1)α`1P`(x1)
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λK(x1, x2) = 1

2

∞∑
`=0

(2` + 1)P`(x1)

[ ∞∑
m=0

∞∑
k=0

(` +m)!

`!m!

(k +m)!

k!m!
α`+k+1

1 α2m+1
2

]
Pk(x2).

Because the iterative solution for the Fredholm integral equation is known [7] the(N + 1)th-
order approximation of equation (22) can be written as

6N+1(x1) = 6′0(x1) +6′1(x1) +6′2(x1) + · · · +6′N+1(x1) (23)

where

6′1(x1) = λ
∫ 1

−1
dx2K(x1, x2)6

′
0(x2)

6′2(x1) = λ
∫ 1

−1
dx2K(x1, x2)6

′
1(x2)

...

6′N+1(x1) = λ
∫ 1

−1
dx2K(x1, x2)6

′
N(x2)

and

σ1(x1) = 6N+1(x1) + λN
∫ 1

−1

∫ 1

−1
. . .

∫ 1

−1
dx2 dx3 . . .dxN+1K(x1, x2)K(x2, x3)

. . . K(xN, xN+1)σ1(xN+1). (24)

By substitution the charge densities,σ1(x1) andσ2(x1), follow immediately:

σ1(x1) = V1

4πKa1

[
1 +

∞∑
m=1

m∏
k=1

z′kzk
1− z′2m

[1 + z′2m − 2z′mx1]
3
2

]
− V2

4πKa1

α2

u′0u1

[ ∞∑
m=1

m∏
k=1

u′k−1uk
1− u2

m

[1 + u2
m − 2umx1]

3
2

]
(25)

and

σ2(x1) = V2

4πKa2

[
1 +

∞∑
m=1

m∏
k=1

u′kuk
1− u′2m

[1 + u′2m − 2u′mx1]
3
2

]
− V1

4πKa2

α1

z′0z1

[ ∞∑
m=1

m∏
k=1

z′k−1zk
1− z2

m

[1 + z2
m − 2zmx1]

3
2

]
(26)

wherez′0 = u′0 = 1, z1 = α2 andzN = α2
1−α1z

′
N−1

; z′1 = α1
1−α2z1

andz′N = α1
1−α2zN

; u1 = α1 and

uN = α1
1−α2u

′
N−1

; u′1 = α2
1−α1u1

andu′N = α2
1−α1uN

for N > 2. The net chargesQ1 andQ2 follow

by integration of equations (25) and (26) (Qi = 2πa2
i

∫ 1
−1 dx σi(x); i = 1, 2):

Q1 = V1a1

K

[
1 +

∞∑
m=1

m∏
k=1

zkz
′
k

]
− V2a1

K

α2

u′0u1

[ ∞∑
m=1

m∏
k=1

u′k−1uk

]
(27)

Q2 = V2a2

K

[
1 +

∞∑
m=1

m∏
k=1

uku
′
k

]
− V1a2

K

α1

z′0z1

[ ∞∑
m=1

m∏
k=1

z′k−1zk

]
. (28)

For equivalent sphere potentials and radii the net charge reads

Q1 = Q2 = V1a1

K

[
1 +

∞∑
m=1

(−1)m
1

m + 1

]
= V1a1

K
ln 2 (29)

which is in exact agreement with Kelvin’s result [10].
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Figure 2. Evaluation of the charge density distribution for two conducting spheres of equal size,
a1 ≡ a2, and ratio of sphere potentials,V2/V1 = 0.927. The evaluation is carried out using
the surface integral method (floating point average) forN = 50 (——),N = 200 (— ·—) and
N = 400(· · · · · ·) and using the Fredholm-type expression forN = 100(— — —).

1.3. Efficiency

The efficiency of the Fredholm-type expression for the charge density distribution was
compared with the surface integral method, or moment method [8], by considering the charge
density distribution for the case where both spheres are of equal size,a1 = a2 = a, held at
constant but unequal potential,V2/V1 = 5100/5500, at a sphere–sphere separation distance
of d/a = 0.025. Calculations for the charge density distribution on the sphere with the higher
potential using the surface integral method were carried out for several values ofN , whereN
is the number of subdivisions of the polar angle,θ , where 0< θ < π , and step-size1 is given
by1 = π

N−1. The surface integral requires filling anN ×N matrix followed by an inversion

which requires approximatelyN3+ N(N+1)
2 operations using forward elimination and backward

substitution in Gauss’ procedure [9]. In figure 2 the calculated charge density distribution for
N = 50, 200 and 400 are shown as a function of polar angle. It is immediately apparent that
even smaller step sizes (largerN ) are required for the surface integral method to approach the
asymptotically correct value for the charge density distribution obtained from the solution of
the Fredholm integral equation using only 100 intervals. Using the Fredholm-type expression
requires onlyN(N+1)

2 operations for the same order accuracy which means that the total number
of operations has been reduced from approximatelyN3, to approximatelyN2.
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Figure 3. The Coulomb force between two dissimilar, fully polarizable, spheres as a function
of the surface potential,V2/V1, and separation distance,d/a1, where d is the surface-to-
surface separation, anda1 is the radius of the top sphere. Force is scaled with a factorf =
K(2π)2(V1/4K)2 which corresponds tof = 2.74× 10−10 for a particle with radius 10× 10−6 m
and potentialV1 = 1 mV.K is the factor 1/4πε0 approximately equal to 9× 109 Vm C−1. The
force is plotted forV1/V2 = 1.0.

2. Coulomb force

The electrostatic force is evaluated in a second calculation where we integrate the effect of the
known charge distribution using the expression for the Coulomb force. Direct substitution of
σ1(x1) andσ2(x1) from equations (25) and (26) into equation (3), yields, after integration over
θ

F = V1V2

K
α1α2

[
1 +

∞∑
m=1

∏m
k=1u

′
kuk

(1− α2u′m)2
+
∞∑
m=1

∏m
k=1z

′
kzk

(1− α1z′m)2
+
∞∑
m=1

∞∑
`=1

∏m
k=1z

′
kzk
∏`
i=1u

′
iui

(1− α1z′m − α2u
′
`)

2

+
α1α2

u′0u1z
′
0z1

∞∑
m=1

∞∑
`=1

∏m
k=1u

′
k−1uk

∏`
i=1z

′
i−1zi

(1− α1um − α2z`)2

]

−V1V1α1

Kz′0z1
α1α2

[ ∞∑
m=1

∏m
k=1z

′
k−1zk

(1− α2zm)2
+
∞∑
m=1

∞∑
`=1

∏m
k=1z

′
kzk
∏`
i=1z

′
i−1zi

(1− α1z′m − α2z`)2

]

−V2V2α2

Ku′0u1
α1α2

[ ∞∑
m=1

∏m
k=1u

′
k−1uk

(1− α1um)2
+
∞∑
m=1

∞∑
`=1

∏m
k=1u

′
kuk
∏`
i=1u

′
i−1ui

(1− α2u′m − α1u`)2

]
. (30)

Equation (30) is valid for the electrostatic force between two polarizable spheres held at
constant potentials,V1 andV2. Experimentally, the constant potential limit describes the
physical situation of two polarizable spheres connected to a voltage power supply. In figure 3
the electrostatic force is plotted as a function of relative sphere size,a2/a1, and separation
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Figure 4. The Coulomb force between two dissimilar, fully polarizable, spheres as a function of
the effective charge density,Q2/Q1, and particle size ratio,a2/a1, wherea1 anda2 are the radii
of the top and bottom spheres, respectively. Force is scaled with a factorf = K(2π)2(Q1/a1)

2,
which corresponds tof = 9.11× 10−17 N for a sphere with radius 10× 10−6 m and net charge
1.6× 10−19 C.K is the factor 1/4πε0 approximately equal to 9× 109 Vm C−1.

distance,d/a1. The most important feature is that the Coulomb force is everywhere repulsive
and monotonic with respect to separation distance but not with respect to relative size ratio.
Furthermore, in the limit of sphere–plate interaction, i.e. whena2/a1 = ∞, the force at near
contact approaches zero.

Alternatively, the polarizable spheres may be held at constant charge,Q1, andQ2.
Experimentally, the constant charge limit describes the charged state of conductive particles
such as aerosols [11] or water in oil emulsions. If particle charges are specified equation (30)
will still hold after the necessary substitutions are made from equations (27) and (28):

V1 = 1

D

[
KQ1

a1

(
1 +

∞∑
m=1

m∏
k=1

uku
′
k

)
+
KQ2

a2

α2

u′0u1

∞∑
m=1

m∏
k=1

u′k−1uk

]
(31)

V2 = 1

D

[
KQ2

a2

(
1 +

∞∑
m=1

m∏
k=1

zkz
′
k

)
+
KQ1

a1

α1

z′0z1

∞∑
m=1

m∏
k=1

z′k−1zk

]
(32)

where

D =
[
1 +

∞∑
m=1

m∏
k=1

zkz
′
k

][
1 +

∞∑
`=1

∏̀
i=1

uiu
′
i

]
− α1α2

z′0z1u
′
0u1

∞∑
m=1

m∏
k=1

u′k−1uk

∞∑
`=1

∏̀
i=1

z′i−1zi

assuming no charge loss,1Q = 0, during the interaction. In figure 4 we plot the electrostatic
force between spheres having equal charge,Q2/Q1 = 1 with respect to relative sphere size,
a2/a1, and separation distance,d/a1. Noticeably, it is only for equivalent sized spheres,
a1 ≡ a2, that the pair interaction is everywhere repulsive to monotonically approach zero at
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Figure 5. The Coulomb force between two, fully polarizable, spheres with effective charge density,
Q2/Q1 = 1.0, as a function of particle size ratio,a2/a1, and separation distance,d/a1. The force is
plotted for particle size ratios: (a) a2

a1
= 1 (——), (b) a2

a1
= 1.2 (— — —) and (c) a2

a1
= 2 (— ·—).

See also figure 4.

large separations. Any difference in size,a1 6= a2, will give rise to a near-field attraction.
Because most particulate systems are polydisperse in nature the electrostatic contribution to
the pair interaction is, therefore, always expected to be attractive at close separations. For
clarity, in figure 5 we plot a few special cases of force that appear in figure 4, for: (a) a2

a1
= 1,

(b) a2
a1
= 1.2 and (c) a2

a1
= 2.

For the sake of completeness we also give the limiting case of the expression for
Coulomb force, equation (30), for two equivalent spheres in ‘contact’. The summed terms
in equation (30) are arranged in their proper order [10] to obtain the contact force which reads

F = V 2

K

[
1

4
+ 2

∞∑
m=1

(−1)m
(m + 1)

(m + 2)2
+
∞∑
`=1

∞∑
m=1

(−1)`+m
(` + 1)(m + 1)

(` +m + 2)2

]
= V 2

K

[
1

4
+ 2

(
π2

12
− ln 2− 1

4

)
+

1

6

(
5

4
+ 13 ln 2− π2

)]
= V 2

6K

(
ln 2− 1

4

)
(33)

which is in exact agreement with Kelvin’s result [10].
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3. Conclusion

The fundamental problem of the electrostatic force between two polarizable spheres is solved
by casting the expression for the charge density distribution in the form of the Fredholm
integral equation of the second kind. The result is an expression of the Coulomb force in a
series form which converges rapidly. From a computational standpoint it is most important
that the Fredholm-type expression can be evaluated two to four orders of magnitude faster
than the surface integral method depending upon the desired accuracy at small polar angles.
Such savings in computational speed may be significant in models of particle aggregation and
suspension stability where pair-interaction forces are evaluated to predict phase transitions.
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